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ABSTRACT 

We develop a statistical approach to evaluate the performance of the ocean color data 

processing system for satellite-derived ocean color data products based on temporal stability of 

retrievals. We use the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing 

system to obtain the normalized water-leaving reflectance ρwN(λ) spectra from the Visible 

Infrared Imaging Radiometer Suite (VIIRS) measurements. The deviations of ρwN(λ) spectra 

from temporally and spatially averaged values are investigated, and the statistics with respect to 

various retrieval parameters are collected, including the solar-sensor geometry (solar-zenith, 

sensor-zenith, and relative azimuth angles), and various ancillary data (surface wind speed, 

surface atmospheric pressure, water vapor amount, and ozone concentration). The performance 

of MSL12 is also evaluated with respect to other intermediate retrieval parameters. The study 

shows that MSL12 produces statistically consistent VIIRS ocean color retrievals in the global 

open ocean, with respect to retrieval geometry parameters, as well as the ancillary inputs. 
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Ocean color remote sensing from space is a rapidly growing field with several new polar 

orbiting instruments launched and recently deployed for routine global ocean property 

measurements and monitoring, including the Visible Infrared Imaging Radiometer Suite (VIIRS) 

on the Suomi National Polar-orbiting Partnership (SNPP) and NOAA-20 satellites, the Ocean 

and Land Colour Instrument (OLCI) on the Sentinel-3A and Sentinel-3B satellites, and the 

Second-Generation Global Imager (SGLI) on the Global Change Observation Mission-Climate 

(GCOM-C) satellite. In particular, VIIRS-SNPP, launched on October 28, 2011, is the first 

VIIRS in the series that are all planned to provide decades long consistent global atmosphere, 

land, cryosphere, and ocean Environmental Data Records (EDR or Level-2 data) (Goldberg et 

al., 2013). To ensure accurate routine production of global ocean optical, biological, and 

biogeochemical properties, a considerable effort has been made towards sensor on-orbit 

instrument calibration (Cao et al., 2013; Sun and Wang, 2015; 2016), on-orbit vicarious 

calibration using the in situ optics data from the Marine Optical Buoy (MOBY) in the waters off 

Hawaii (Clark et al., 1997; Wang et al., 2016), development and improvement of ocean color 

retrieval algorithms (Jiang and Wang, 2014; Wang and Jiang, 2018; Wang et al., 2012; Wang 

and Son, 2016), and VIIRS ocean color product data evaluation and validation (Barnes et al., 

2019; Hlaing et al., 2013; Wang et al., 2013). 

Deriving global ocean optical, biological, and biogeochemical property data from space-

based measurements is a very complicated and challenging task, which requires close attention to 

instrument calibration (including vicarious calibration), algorithm development, and the 

validation of the results (McClain, 2009). The spaceborne radiometers directly measure the top 

of the atmosphere (TOA) radiances, which in addition to the water color signal also include 

radiance contributions from various light scattering processes in the atmosphere, and reflection 

and refraction from the water surface. Extracting the ocean color spectra from the TOA radiance 

spectra is known as atmospheric correction (Gordon and Wang, 1994a; IOCCG, 2010; Wang, 

2007), and it involves subtraction of these different radiance contributions, which are much 

larger than the ocean color signal (Gordon and Wang, 1994a; IOCCG, 2010; Wang, 2007). 
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Furthermore, these terms depend on multiple parameters, such as solar-sensor geometry, but also 

physical or meteorological conditions, such as surface wind speed, atmospheric pressure, 

atmospheric ozone concentration, and column water vapor amount (Ramachandran and Wang, 

2011). Due to the overall complexity and the multiple parameters involved in the atmospheric 

correction process, comparisons with in situ ocean color measurements are integral and 

important to maintain good quality of the ocean color satellite data retrievals (Werdell and 

Bailey, 2005).  

In situ measurements, however, also have significant limitations. First, the number of in situ 

measurements is several orders of magnitude less than the number of satellite remote sensing 

retrievals. Second, in situ measurements are usually confined to a few stations in the regions of 

interest, while cruises with more variety of sampling stations are not as frequent. This means that 

most geographical ocean regions and times are never represented in the available in situ data. 

Furthermore, in situ data also involve measurement uncertainties (Werdell and Bailey, 2005; 

Zibordi et al., 2009; Zibordi et al., 2015), sometimes even with large uncertainties in data 

quality. 

One possibility to address these limitations is to perform an inter-sensor comparison (Barnes 

and Hu, 2016; Wang et al., 2002; Zibordi et al., 2006). However, it is not easy to attribute the 

discrepancies to a particular sensor, especially since the older and more thoroughly studied 

sensors often have also suffered more degradation due to longer time in service. In addition, 

differences in sensor calibration may be difficult if not impossible to disentangle from the 

differences in performance of the retrieval algorithms. 

The main idea of this work is to use ocean color data from the same sensor over large 

swaths of the global open ocean, where water conditions are relatively uniform, and temporal 

changes are more gradual, to evaluate the statistical consistency of the ocean color retrievals. 

Yet, even within the relatively uniform conditions of the open ocean, ocean optical, biological, 

and biogeochemical properties can have a large spatial variation over longer length scales, as 

well as a significant seasonal variation. Therefore, it is the deviation from the spatial and 
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temporal average, or anomaly, that can provide the information about the biases and consistency 

of ocean color data retrievals for the particular space-time domain. It is assumed that, for perfect 

retrievals, little to no deviations from such an average are expected. 

The relevant spatial and temporal length scales of the average need to be long enough to 

provide enough data for a meaningful and consistent average (given that often retrievals are not 

possible or are masked out due to clouds (King et al., 2013), high sun glint contamination (Wang 

and Bailey, 2001), straylight effect (Jiang and Wang, 2013), high solar- and sensor-zenith angles 

(Mikelsons and Wang, 2019), or other conditions. The length scale must be smaller than the 

relevant scale of physical phenomena in water (such as ocean currents, mesoscale eddies, algal 

blooms, etc.). The time scale for calculating the average also needs to be shorter than the 

corresponding time scales of physical processes. At the very least, it should be able to resolve the 

seasonal variation, which is the most important temporal cycle resolvable by daily satellite 

observations. 

In this study, it is assumed that the ocean physical processes with comparatively short-time 

scales, such as diurnal changes, are relatively small in the open ocean over the hourly time scale. 

The orbital period of polar orbiting Earth observing satellites is about 100 minutes, and the 

variation of the local time of satellite overpass from day to day is roughly of the same time scale. 

Thus, we assume that the diurnal changes are comparatively small within this time scale. Indeed, 

matchups with in situ data measured within hours of satellite overpass are often used to check 

data quality (Wang et al., 2009b; Werdell and Bailey, 2005). 

It should be pointed out that this method has limitations — it can only measure satellite data 

statistical consistency. It cannot, for example, detect any long-term trends in ocean color 

measurements, nor any changes or irregularities of the radiance spectral shape (Wei et al., 2016). 
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The Multi-Sensor Level-1 to Level-2 (MSL12) is the current routine ocean color data 

product retrieval system used at NOAA. In particular, VIIRS-SNPP and VIIRS-NOAA-20 global 

ocean color products have been routinely produced using the MSL12 ocean color data processing 

system since their successful launches in October 2011 and November 2017, respectively. 

MSL12 is an enterprise ocean color data processing system, and the software is based on the 

NASA Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Data Analysis System (SeaDAS) 

version 4.6 with several updates and modifications. MSL12 is designed to provide consistent 

ocean color retrievals by employing the same retrieval algorithms for multiple satellite sensors 

(Wang, et al., 2002). Specifically, in this study, we use the near-infrared (NIR)-based 

atmospheric correction in MSL12 (Gordon and Wang, 1994a; Wang, et al., 2013) with the 

improved NIR ocean reflectance correction algorithm (Jiang and Wang, 2014), which combines 

the three other NIR water reflectance correction algorithms (Bailey et al., 2010; Ruddick et al., 

2000; Wang, et al., 2012). However, it should be noted that for global open ocean waters the NIR 

ocean reflectance contribution is generally negligible, thus the NIR reflectance correction in the 

ocean color data processing is not important. 

The main VIIRS ocean color data products derived by MSL12 are the normalized water-

leaving radiance spectra, nLw(λ), which are equivalent to the water-leaving radiances measured 

on the ocean surface assuming no atmosphere and the Sun at the zenith (Gordon, 2005; Morel 

and Gentili, 1996; Wang, 2006). The nLw(λ) spectra are subject to destriping to remove striping 

artifacts (Mikelsons et al., 2014). The destriped nLw(λ) spectra are then used to further derive 

ocean biological and biochemical property data, such as chlorophyll-a (Chl-a) concentration (Hu 

et al., 2012; O'Reilly et al., 1998; Wang and Son, 2016), water diffuse attenuation coefficient at 

the wavelength of 490 nm Kd(490) (Lee et al., 2005; Wang et al., 2009a), and for the domain of 

the photosynthetically available radiation (PAR) Kd(PAR) (Son and Wang, 2015). Other data 

products, such as aerosol optical depth (AOD) (Wang et al., 2005) and the aerosol Angstrom 

coefficient (Angstrom, 1929), characterize aerosol properties, and are also used in atmospheric 

correction (IOCCG, 2010; Wang, et al., 2005). In this study, we convert the nLw(λ) spectra to the 
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normalized water-leaving reflectance spectra, defined as ρwN(λ) = π nLw(λ)/F0(λ), where F0(λ) is 

the extraterrestrial solar irradiance (Thuillier et al., 2003). This way, the ocean color spectra can 

be more equally compared spectrally (Gordon and Wang, 1994a). 

On input, MSL12 requires the TOA radiances measured by the sensor, i.e., VIIRS Sensor 

Data Records (SDR, or Level-1B data), as well as ancillary data characterizing the atmospheric 

and ocean surface conditions to aid the retrievals (Ramachandran and Wang, 2011). The sensor-

measured TOA radiances need to be properly calibrated (Cao, et al., 2013; Sun and Wang, 2015; 

2016). In addition, complete geolocation information is required (latitude and longitude for each 

retrieval sample), as well as information about retrieval geometry, which includes the solar- and 

sensor-zenith angles, as well as the relative azimuth angle. 

The main ancillary data are the sea level atmospheric pressure, surface wind speed, the 

amount of ozone and water vapor in the atmosphere, integrated over the altitude (Ramachandran 

and Wang, 2011). Using more accurate ancillary data, such as those produced by the NOAA 

Global Forecasting System (GFS) has been shown to increase the accuracy of the ocean color 

products (Ramachandran and Wang, 2011). 

2.2. Evaluation approach and criteria  

The VIIRS-SNPP SDR (or Level-1B data) from the year 2016 were processed to produce 

global ocean color product data using the MSL12 ocean color data processing system. We work 

with ρwN(λ) spectra, but the entire procedure can also be applied to the normalized water-leaving 

radiance nLw(λ) spectra (or remote sensing reflectance Rrs(λ) spectra, defined as Rrs(λ) = 

nLw(λ)/F0(λ)), since these only differ by constant conversion factors. Data obtained with other 

retrieval algorithms, or even from different sensors can also be analyzed using this method. 

The first step is to establish a baseline for temporal and spatial averaged ρwN(λ) data. For 

each day of retrievals, the global Level-2 ρwN(λ) data are binned into a global Level-3 daily 

average (Campbell et al., 1995). We use a particular kind of grid that covers the entire globe with 

bins of nearly equal area. Within this grid, the bins are arranged into rows, such that an integer 

number of rows fit within the 180º of latitude. For example, the 9 km bins used in this study 
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cover 5 minutes in latitude. Thus, 2160 rows of the 9 km bins span the entire 180º of latitude. 

The longitudinal size of bins is determined as the closest match to the extent in the latitude (thus 

ensuring nearly square shaped bins) that also fits an integer number of bins within the row 

spanning the entire 360º of longitude, for each row of bins. Thus, with 9 km bins, there are 4320 

bins per one row on the equator. This number decreases towards the poles as a cosine function of 

the latitude. 

In the binning process, we use several masks and data quality flags, e.g., land, cloud (Wang 

and Shi, 2006), straylight (Jiang and Wang, 2013), high sun glint contamination (Wang and 

Bailey, 2001), etc., to discard poor quality retrievals due to various conditions in order to obtain 

the most accurate binned data product for all ocean color data, e.g., ρwN(λ) [or nLw(λ)], Chl-a, 

Kd(490), etc.  

In the following step, a weighted temporal moving average is calculated for each bin using 

the daily binned data for the time average period Ta = 17 days from 8 days before and 8 days 

after the particular day. We weight the time average with a cosine function of time difference Δt, 

measured in days, i.e., w(Δt) = cos[πΔt/(Ta + 1)]. This choice of weighting function emphasizes 

the importance of the data closer to a given time, however, other weighting functions can also be 

used, with qualitatively similar results. The choice of time period Ta is motivated by the SNPP 

revisit cycle of 16 days. 

Once the spatially binned and time averaged baseline data are obtained, the anomaly can be 

calculated. But, before that, we filter the ρwN(λ) data to discard the coastal areas from the 

statistical analysis due to their much shorter temporal and spatial scales of variability. To have a 

simple criterion, we choose to only use the ocean color retrievals from locations with water depth 

exceeding 1 km (i.e., global deep-water regions). Furthermore, we again exclude data with high 

sun glint conditions, and other conditions severely affecting the retrieval quality. However, we 

include data with high solar- and sensor-zenith angles to estimate the effect of such conditions on 

the derived ocean color products. 
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For each of the filtered retrieval data points, the corresponding spatial-temporal average 

calculated in the previous step is subtracted, yielding the anomaly ΔρwN(λ, s, t) (s and t denote 

space and time dependence, respectively). We also look up the corresponding values of various 

geometrical, ancillary, and physical parameters pi(s,t) for each retrieval. The anomaly, ΔρwN(λ, s, 

t) is then recorded in histograms to analyze its dependence on parameters pi. For each histogram, 

we calculate the mean anomaly ΔρwN(λ, pi) over all retrievals that fall in the same bin of the 

parameter pi. The total number of data points in each histogram bin of the dependent parameter pi 

is also recorded. The major steps of this statistical analysis are schematically depicted in Fig. 1. 
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Figure 1. Diagram summarizing the steps of the statistical analysis. Indices s and t 

denote space and time dependence of the Level-2 data, respectively. The index b 

denotes spatial bin. The parameters pi denote all retrieval and physical parameters 

included in this study. The quality flags in the step 3 may differ from those in the step 

1. 

For good quality ocean color retrievals, the mean anomaly ΔρwN( , pi) [further denoted as 

ΔρwN(λ)] is expected to be close to zero across the entire range of any dependent parameter pi. A 

significant departure from zero in anomaly (compared to the retrieval accuracy requirements) 

indicates either an underestimate or an overestimate of ρwN(λ) spectra under certain conditions 

characterized by the corresponding dependent variable pi. We note that the accuracy requirement 

of satellite-derived ρwN(λ) spectra for the global open ocean is that ΔρwN(λ) in the blue (443 nm 
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band) < ~0.001 (or 5%) (Gordon and Wang, 1994a; IOCCG, 2010; Wang, 2007). In addition to 

the mean anomaly, we also collect statistics and monitor the variance of the anomaly. Lower 

variance usually implies more precise retrievals for a given parameter range.  

We note that results for the reflectance anomaly ΔρwN(λ) are not sensitive to the exact choice 

of Ta, or the type of time averaging used, nor to the spatial bin size. However, the variance of the 

ΔρwN(λ)  increases with averaging over longer time period (Ta=33), and larger spatial bin size 

(18km), because natural fluctuations and changes of ρwN(λ) over longer temporal and spatial 

scales are included into the average. 
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3. Results 

The relevant parameters to ocean color retrievals can roughly be divided into three groups: 

the parameters describing the solar-sensor geometry with respect to the observable water surface, 

the ancillary parameters, and the intermediate parameters describing the retrieval conditions. 

3.1. Solar-sensor geometry effect 

We first evaluate the consistency of retrievals with respect to the solar-sensor geometry 

angles. Figure 2a shows the dependence of ΔρwN(λ) on the sensor-zenith angle. Unsurprisingly, 

ΔρwN(λ) is smaller for lower values of this angle, but it becomes significantly negative for 

sensor-zenith angles over 60o, which means that ρwN(λ) spectra are underestimated for these 

conditions. From results in Fig. 2a, it appears that the currently used threshold value for sensor-

zenith angle of 60o in MSL12 is a reasonable choice to separate good retrievals from poor or 

questionable ones.  
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 226 

Figure 2. Dependence of ΔρwN( ) on (a) the sensor-zenith angle, (b) the sample along 

the scan, (c) the solar-zenith angle, and (d) the relative azimuth angle. The solid colored 

lines show the anomaly ΔρwN(λ). The black dashed lines, along with the right ordinates, 

indicate the number of retrievals. The gray shaded areas in panels (a) and (b) indicate 

where the large sensor-zenith angle flag (> 60°) is triggered by MSL12 to warn about 

questionable data quality of retrievals. Similarly, the gray shaded areas in panel (c) 

indicate the large solar-zenith angle flag (> 70°) in MSL12. 
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Table 1. Mean absolute deviation of ΔρwN(λ) for three ranges of sensor-zenith angle (θ). 

 

λ (nm) 

MAD[ΔρwN(λ)] × 104 

θ ≤ 20° 20° < θ ≤ 60° θ > 60° 

410 2.1 2.1 5.2 

443 2.7 2.0 7.6 

486 2.2 1.4 4.2 

551 1.0 0.5 1.4 

638 0.6 0.6 1.1 

671 0.3 0.2 1.6 

234 

To quantify the deviations of ΔρwN(λ) from zero, we show the results for the mean absolute 

deviation of ΔρwN(λ) over the three ranges of sensor-zenith angle (less than 20°, 20° to 60°, and 
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larger than 60°) in Table 1. Note that since ΔρwN(λ) is an anomaly, its mean value over the entire 

range of the histogram is zero. 

A closely related parameter to sensor-zenith angle is the position or sample along the scan. 

The VIIRS-SNPP swath extends up to about 3040 km across the direction of the flight path and 

is symmetric about the nadir. This corresponds to the sensor-zenith angle ranging from 0o at the 

center of the scan up to 70o at the swath edge. The VIIRS-SNPP medium spatial resolution bands 

(M-bands) used for ocean color retrievals have 3200 samples per scan. Figure 1b shows the 

dependence of ΔρwN(λ) from the sample along the scan. Here, we count the number the samples 

in the direction from west to east, with the middle sample roughly corresponding to the nadir. 

Again, for most locations along the swath, the mean anomaly is minimal. However, near the 

swath edges, ΔρwN(λ) is significantly increased. Predictably, the results are very similar to the 

sensor-zenith angle dependence. However, the sample along the scan dependence reveals more 

information, since it also captures asymmetry between the two sides of a scan, which would get 

averaged out on the sensor-zenith angle dependence (Fig. 2a). For this reason, we choose the 

sample along the scan in favor of sensor-zenith angle in the further discussion. Table 2 

summarizes the results for the mean absolute deviation of ΔρwN(λ) for the five regions along the 

swath, defined by the five ranges of sample numbers: [0–399], [399–1199], [1200–1999], [2000–

2799], and [2800–3199]. 
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Table 2. Mean absolute deviation of ΔρwN(λ) for the five regions along the swath. 

 

λ (nm) 

MAD[ΔρwN(λ)] × 104 

0–399 400–1199 1200–1999 2000–2799 2800–3199 

410 13 3.7 2.1 4.7 26 

443 2.5 1.8 2.6 3.7 19 

486 0.7 1.0 2.1 2.3 8.3 

551 1.3 1.2 0.9 1.6 4.5 

638 1.7 0.6 0.6 0.9 0.6 

671 1.7 0.6 0.4 0.7 1.1 

255 
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Figure 2c shows the dependence with respect to the solar-zenith angle. Similar to the sensor-

zenith angle dependence, we see significant deviations pointing to poor retrievals for values of 

the solar-zenith angle above 70°, which is also used as a threshold value in MSL12 for flagging 

the poor quality data due to this condition. In addition, we see some deviations from the average 

for very low values of solar-zenith angle. This corresponds to the relatively smaller number of 

retrievals in the tropics (only 1.3% of all retrievals have solar-zenith angle less than 10°), 

acquired almost exclusively on the west side of the scan (since VIIRS-SNPP is flying in the polar 

sun synchronous orbit with afternoon equatorial overpass). Thus, this deviation is also related to 

the sample across the scan dependence in Fig. 2b, for an approximate range of samples in the 

range 0–400. Table 3 summarizes the mean absolute deviations of ΔρwN(λ) for the three ranges of 

solar-zenith angle: less than 20°, 20° to 70°, and larger than 70°. 
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Table 3. Mean absolute deviation of ΔρwN(λ) for the three ranges of solar-zenith angle (θ0). 

 MAD[ΔρwN(λ)] × 104 

λ (nm) θ0 ≤ 20° 20° < θ0 ≤ 70° θ0 > 70° 

410 4.7 2.0 5.2 

443 1.4 1.7 3.2 

486 1.0 0.8 1.6 

551 1.0 0.5 0.2 

638 0.9 0.4 0.6 

671 1.3 0.1 0.4 

267 

The dependence of ρwN(λ) anomaly on the relative azimuth angle is shown in Fig. 2d. We 

define it as an angle ranging from −180º to +180º between the azimuthal directions of the solar 

reflection and the sensor direction. Thus, a small (near zero) relative azimuth angle indicates a 

possibility of solar Fresnel reflection from water surface (sun glint) reaching the sensor (if solar- 

and sensor-zenith angles are similar). The number of data points shows two dips near ±90º. This 

is because near the equator, the relative azimuth angle can only fall within two narrow ranges of 

values corresponding to the samples on the east and the west side of the scan. For higher 

latitudes, these two ranges of the relative azimuth angle can broaden and also shift with a 
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seasonal modulation. However, the two ranges of relative azimuth angle near ±90º do not have 

many retrievals. Unsurprisingly, with fewer data points for statistics, ΔρwN(λ)  also shows 

somewhat more noisy behavior near these two dips. 

We also investigate how different combinations of geometric retrieval parameters affect the 

ocean color retrievals. In particular, we focus on the combined effect of different values of the 

solar-zenith angle and the sample along the scan. In Fig. 3a, we show the mean anomaly for the 

short-blue band ρwN(410) with respect to both solar-zenith angle and the sample along the scan. 

Note that low values of solar-zenith angle are only possible for the westernmost part of the 

swath. The oval in dashed line indicates an approximate parameter region with high sun glint, 

and thus sharply decreased the number of retrievals and increased noise in the data. Significant 

deviations from average are encountered for the large values of solar-zenith angle, and near both 

edges of the swath. It appears that high solar-zenith angles have a more pronounced impact on 

retrievals in the eastern part of the swath. Figures 3b, 3c, and 3d show a very similar pattern for 

ρwN(443), ρwN(486), and the green band ρwN(551), respectively, although the amplitude of the 

anomaly ΔρwN(λ) is decreasing with increasing wavelength λ. Indeed, the similarity of patterns 

seen in Fig. 3 indicates that the ρwN(λ) anomalies are quite correlated across the spectrum 

(IOCCG, 2010; Wang and Gordon, 2018).  
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 293 

Figure 3. Dependence of ΔρwN( ) on the solar-zenith angle and the sample along the 

scan for (a) ΔρwN(410), (b) ΔρwN(443), (c) ΔρwN(486), and (d) ΔρwN(551). The dashed 

oval line indicates the parameter region with high sun glint conditions, where fewer 

retrievals result in more noisy data. The vertical lines indicate the boundary when 

sensor-zenith angle exceeds 60º, and the horizontal line indicates the onset of high 

solar-zenith angle at 70º. 
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 301 

Figure 4. Dependence of ΔρwN( ) on (a) the wind speed, (b) the amount of water vapor 

in the atmosphere, (c) the sea level atmospheric pressure, and (d) the ozone 

concentration. The solid colored lines show ΔρwN(λ). The black dashed lines, along 

with the right ordinates, indicate the number of retrievals. 
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3.2. Effects of ancillary data inputs 

Next, we examine the statistical consistency with respect to some physical parameters 

affecting the ocean color retrievals. The results in the previous section confirm that good quality 

ocean color retrievals are obtained for solar-zenith angles and sensor-zenith angles of ≤ 70° and 

≤ 60°, respectively. Therefore, in the further analysis, we only use the ocean color retrievals with 

solar- and sensor-zenith angles meeting these requirements. 

Figure 4a shows the dependence of the deviation or ρwN(λ) anomaly ΔρwN(λ) with respect to 

the surface wind speed. For wind speed up to about 14 m/s, the deviation from average value is 

negligible. However, it increases for higher wind speeds, which occur for a smaller number of 

retrievals. In the MSL12 ocean color data processing, there are three radiance components that 

require the input of wind speed for surface roughness characteristics, i.e., ocean whitecap 
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radiance (Gordon and Wang, 1994b), sun glint radiance (Wang and Bailey, 2001), and Rayleigh 

scattering radiance (Gordon and Wang, 1992; Wang, 2002; 2016). However, examining the 

scenes with whitecaps in detail, we have concluded that MSL12 ρwN(λ) spectra data are 

unchanged, or not impacted by the whitecaps radiance contribution with high wind speed. In 

fact, the TOA whitecap radiance contribution is generally not significant (Moore et al., 2000). 

Other possible errors are from sun glint contamination correction (Wang and Bailey, 2001) that 

uses the Cox and Munk (Cox and Munk, 1954) model with the input of wind speed for sun glint 

radiance estimation, as well as Rayleigh scattering radiance computation that also uses the Cox 

and Munk model (Cox and Munk, 1954) for surface roughness (wind speed) (Gordon and Wang, 

1992; Wang, 2002; 2016). Thus, it is possible that there may be some uncertainties related to the 

Cox and Munk (1954) model for high wind speed (Zhang and Wang, 2010). In addition, we note 

that high winds have a slight correlation with sparse clouds, which may increase variability in the 

satellite-retrieved ρwN(λ) values. 

Figure 4b shows the dependence on the amount of the water vapor in the atmospheric 

column. No obvious deviation is seen here, except for rarely encountered values of very low 

humidity, where insufficient data yields noisy results. Figure 4c similarly indicates no anomalous 

behavior with respect to the sea level atmospheric pressure, which is used as one of the inputs for 

the Rayleigh radiance computation (Wang, 2005; 2016). Likewise, Figure 4d shows no 

significant deviation with respect to the amount of the ozone in the atmosphere. Therefore, the 

MSL12 ocean color data processing system performed perfectly for VIIRS-derived ρwN(λ) 

spectra with respect to the ancillary inputs of water vapor, ocean surface atmospheric pressure, 

and ozone amount, as well as to the wind speed up to about 14 m/s. 

To better quantify the anomaly ΔρwN(λ), we summarize the mean absolute deviation of 

ΔρwN(λ) for wind speeds less than and exceeding 14 m/s in Table 4. We recall that the accuracy 

requirement for ρwN(λ) at the blue 443 nm band is within ~0.001 (or 5%). From Table 4, MSL12 

retrieved VIIRS-SNPP ρwN(λ) spectra meet this goal even for high wind speeds. 
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Table 4. Mean absolute deviation of ΔρwN( ) for low and high wind speeds. λ343 
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λ (nm) 

MAD[ΔρwN(λ)] × 104 

wind speed ≤ 14 m/s wind speed > 14 m/s 

410 1.1 8.6 

443 0.8 5.9 

486 0.6 4.2 

551 0.3 2.5 

638 0.3 1.5 

671 0.2 1.6 

3.3. Effects of intermediate retrieval parameters 

The glint coefficient, computed from the Cox and Munk model (Cox and Munk, 1954; Wang 

and Bailey, 2001), is a more precise indicator of the degree to which the sun glint affects the 

retrievals. In addition to the combination of the solar- and sensor-zenith angles, and the relative 

azimuth angle, the glint coefficient computation also includes the wind speed, which affects the 

surface roughness, and thus also impacts sun reflection from the water surface (Cox and Munk, 

1954; Wang and Bailey, 2001). The dependence on the glint coefficient in Fig. 5a shows some 

increase in ΔρwN(λ) for stronger glint conditions. 
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Table 5. Mean absolute deviation of ΔρwN(λ) for different ranges of AOD. 

 

λ (nm) 

MAD[ΔρwN(λ)] × 104 

AOD < 0.1 0.1 < AOD ≤ 0.2 0.2 < AOD ≤ 0.3 AOD > 0.3 

410 2.9 1.7 9.4 22 

443 2.1 1.1 4.0 11 

486 1.5 1.3 0.3 2.6 

551 0.9 1.1 0.8 1.0 

638 0.9 1.1 3.1 5.2 

671 0.5 0.9 2.2 4.7 

352 

The AOD is a parameter quantifying the aerosols in the atmosphere above the retrieval 

location. Aerosol optical property data are by-products from atmospheric correction (Gordon and 

Wang, 1994a; Wang, et al., 2005). The AOD measures the extent of light scattering and 

attenuation by aerosols. Higher AOD usually corresponds to more difficult retrieval conditions 

(Gordon and Wang, 1994a; IOCCG, 2010; Wang, 2007). In particular, cases with heavy aerosols 
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such as smoke and dust are masked out. In these conditions, for AOD higher than 0.2, ρwN(λ) 

spectra are slightly overestimated for the red bands, and they are slightly underestimated for the 

blue bands (Fig. 5b). However, for extremely low AOD cases (e.g., < 0.03) ρwN(λ) spectra at the 

short wavelengths (410 and 443 nm) are also slightly underestimated (Fig. 5b). This is likely due 

to the correlations with other impact factors, e.g., cases with low aerosols in the Southern Ocean 

where retrievals are also associated with large solar-zenith angles (see Fig. 2c). Table 5 

summarizes the mean absolute deviation of ρwN(λ) for these four ranges of AOD: less than 0.1, 

0.1–0.2, 0.2–0.3, and larger than 0.3. We note that for AOD ≤ 0.3, the mean anomalies of VIIRS-

derived ρwN(λ) spectra are mostly within ~0.0005, except for the short blue band ρwN(410) with 

the value of ~0.001, which is significantly better than the accuracy requirement of ~0.001 (or 

5%) for the blue band reflectance ρwN(443).  

The next panel, Fig. 5c, shows that reflectance anomaly ΔρwN(λ) spectra are slightly 

elevated for retrievals within ~5–10 km from clouds. The remnants of the straylight effect (Jiang 

and Wang, 2013) are the most likely cause for this. Table 6 shows the increases in ΔρwN(λ) for 

the three ranges (0–5 km, 5–15 km, and 15–30 km) of distance from the nearest cloud, using the 

average values for retrievals further than 30 km from clouds [Δρ *
wN (λ)] as baseline values. To 

confirm the effect of the proximity to the clouds, we have also repeated the same study by 

including the data affected by straylight and cloud shadow conditions. These results are shown in 

Fig. 5d, and indeed exhibit a more pronounced increase in ΔρwN(λ) spectra for retrievals near 

clouds, as compared to Fig. 5c, where data affected by straylight and cloud shadow are masked 

out. 
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Figure 5. Dependence of ΔρwN( ) on (a) sun glint coefficient, (b) aerosol optical depth, 

(c) distance from the nearest cloud, and (d) distance from the nearest cloud, including 

the retrievals affected by straylight and cloud shadow conditions. The solid colored 

lines show ΔρwN(λ). The black dashed lines, along with the right ordinates, indicate the 

number of retrievals. 

Table 6. Mean absolute deviation of ΔρwN(λ) for the three ranges of distance from the nearest cloud 

(DNC). 

 

λ (nm) 

MAD[ΔρwN(λ) – ΔρwN
*(λ)] × 104

  

DNC ≤ 5 km 5 km < DNC ≤ 15 km 15 km < DNC ≤ 30 km 

410 15 6.3 0.5 

443 11 4.4 0.4 

486 6.8 2.8 0.3 

551 3.1 1.3 0.2 

638 0.3 0.3 0.0 

671 0.4 0.4 0.1 

3.4. Impact on derived biological and biogeochemical products 
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While normalized water-leaving reflectance ρwN(λ) spectra are the central ocean color 

measurements, the impact of ΔρwN(λ) on the ρwN(λ)-derived ocean biological and biogeochemical 

products, such as Chlorophyll-a concentration (Hu, et al., 2012; O'Reilly, et al., 1998; Wang and 

Son, 2016), and water diffuse attenuation coefficient at the wavelength of 490 nm Kd(490) 

(Wang, et al., 2009a), are also important to evaluate. Consequently, we want to estimate how 

much these derived quantities are affected by any systematic biases in ρwN(λ) with respect to 

various retrieval parameters.  

However, both Chl-a and Kd(490) range over several orders of magnitude, and their 

frequency distributions are very skewed. Consequently, the mean anomaly is not a good measure 

for data consistencies, as it is heavily impacted by few infrequent localized events (such as algae 

blooms). In order to overcome this difficulty, we have instead opted to evaluate the median 

anomaly dependence on various retrieval parameters for Chl-a and Kd(490).  

Figure 6a shows the median anomaly for Chl-a and Kd(490) versus the sample along the 

scan (also related to sensor-zenith angle), with little to no impact in the derived quantities for all 

values of this angle. This suggests that the calculation of Chl-a and Kd(490) may be extended for 

larger values of sensor-zenith angle. However, in Fig. 6b, the dependence on solar-zenith angle 

shows significant positive bias for values larger than 70°, which is similar to the results for the 

reflectances in Fig. 2c. Thus, the systematic biases in reflectances for large solar-zenith angles 

translate into biases for the derived Chl-a and Kd(490). The last two panels, Figs. 6c and 6d, 

show the dependence of the median anomaly in Chl-a and Kd(490) with respect to the wind speed 

and the AOD. Comparing these with the results in Figs. 4a and 5b, respectively, we note that the 

derived quantities are overall less sensitive to the biases in the reflectance spectra. Results for 

other dependent variables (not shown) similarly show little to no systematic bias in derived Chl-a 

and Kd(490). In fact, across the all the parameter ranges in Figs. 2, 4 and 5 (with the exception of 

solar-zenith angles exceeding 70°), the Chl-a anomaly is less than 0.01mg/m3, and Kd(490) 

anomaly is less than 0.005m-1. 
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Figure 6. Dependence of Chl-a (OCI algorithm) and Kd(490) on (a) the sample along 

the scan, (b) the solar-zenith angle, (c) the wind speed, and (d) the aerosol optical 

depth. The gray shaded areas in panel (a) indicate where the large sensor-zenith angle 

flag (> 60°) is set in MSL12. Similarly, the gray shaded areas in panel (b) indicate the 

large solar-zenith angle flag (> 70°) in MSL12. 

4. Discussion 

In the past, several studies for the regional ocean color data consistency have looked at the 

variability of ocean color spectra with respect to different retrieval parameters (e.g., Barnes and 

Hu, 2016). Instead, we have analyzed the deviation from the normal (average or median), or the 

anomaly, for the global deep waters which display high natural variability of the ocean color 

spectra across the different regions. To illustrate the importance of using the ρwN(λ) spectra 

anomaly, or the deviation from average, to assess the global data statistical consistency, we have 

also repeated parts of this study using the ρwN(λ) spectra directly, i.e., without subtracting the 

average values. Results (not shown) confirmed our expectations, i.e. satellite-derived ρwN(λ) 

spectra are a function of environmental variables, as well as various solar-sensor geometry 
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inputs. Thus, the variability of ρwN(λ) is not a good measure of global data statistical consistency, 

and is only appropriate in regional studies where the natural variability of the ocean color spectra 

is rather small. 

We have also analyzed the reflectance anomaly ΔρwN(λ) with retrievals restricted to 

oligotrophic waters (areas where multi-year Chl-a average is less than 0.1 mg/m3), which yield 

very similar results. Since the oligotrophic waters do not extend to latitudes 40° from the 

equator, the values of the solar-zenith angle are also generally smaller, and the retrieval 

conditions are overall better. This is reflected in lower anomaly across the swath dependence. 

The dependences on the physical ancillary parameters are also very close to those from the 

global deep water discussed in the previous sections. Furthermore, we have also repeated the 

analysis by restricting the retrievals to those with QA score (Wei et al., 2016) higher than 0.6. 

These results are even closer to those described in the previous sections, with only slightly 

smaller systematic biases for the retrievals with high solar zenith angle and high wind speed. 

It is noted that while the method in this study identifies anomalies in ocean color data 

retrievals, it does not identify the exact sources of data inconsistencies. For example, this 

analysis cannot distinguish between inconsistencies introduced by suboptimal sensor calibration, 

and various parts of the atmospheric correction and retrieval algorithms. Any correlation of the 

deviations in anomaly with particular retrieval parameters should be seen only as a hint for what 

part of the retrieval process might need a further examination. Furthermore, although we have 

attempted to investigate the dependencies with respect to the most relevant retrieval parameters, 

these results are not exhaustive in the sense that there may be other significant parameters or 

combinations of parameters that provide yet more information on the quality and consistency of 

the retrievals. 
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5. Conclusions 

We have analyzed recently reprocessed VIIRS-SNPP ocean color data for the entire 2016 

year for statistical consistency over the global deep ocean. The results show very small to 

453 

454 

455 



  23

negligible deviations from average values for most retrieval parameters. We note somewhat 

increased ρwN(λ)  spectra in all bands for higher wind speed (> 14 m/s), and also in areas close to 

clouds, likely due to the effect of straylight. We also find that ρwN(λ) for the blue bands are 

underestimated in the areas with heavy aerosol presence in atmosphere, while the red band is 

overestimated in those conditions. 

We have also demonstrated how the analysis presented in this work can be used to identify 

and distinguish the regions of parameters (such as solar- and sensor-zenith angles) with a 

systematic bias in the retrieved data, and how different versions of retrieval algorithms can be 

evaluated based on retrieval consistency. Although this study only covers one year of data, we 

have not observed any significant changes in any of our results for different years in previous 

studies. Also, further analysis shows that varying the time and length scale of the average values 

used to calculate the anomaly does not significantly impact the results presented in this study. 

While the list of retrieval parameters considered and investigated in this study is not exhaustive, 

it provides a comprehensive test for data statistical consistency, and means to identify the 

systematic biases. This is particularly helpful in the design of better and more precise satellite 

ocean color retrieval algorithms, as well as identification of what areas to look into where these 

algorithms can be improved. 
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